9,078 research outputs found

    nuSTORM: Neutrinos from Stored Muons

    Get PDF
    nuSTORM (Neutrinos from STORed Muons) is a proposed storage ring facility to deliver beams of muon antineutrinos and electron neutrinos from positive muon decays (muon neutrinos and electron antineutrinos from negative muon decays), with a central muon momentum of 3.8 GeV/c and a momentum acceptance of 10%. The facility will allow searches for eV-scale sterile neutrinos at better than 10 sigma sensitivity, it will be able to provide measurements of neutrino and antineutrino-nucleus scattering cross sections with percent-level precision and will serve as a first step towards developing muon accelerators for particle physics. We report on the physics capabilities of the nuSTORM facility and we specify the main features of its design, which does not require any new technology. The flux of the neutrino beam can be determined with percent-level accuracy to perform cross-section measurements for future neutrino oscillation experiments and to resolve the hints for eV-scale sterile neutrinos. nuSTORM may be considered as a first step towards a Neutrino Factory and a Muon Collider.Comment: 10 pages, 5 figures, Prospects in Neutrino Physics Conference (NuPhys). eConf (CNUM: C14-12-15

    Hierarchy and Polysynchrony in an adaptive network

    Full text link
    We describe a simple adaptive network of coupled chaotic maps. The network reaches a stationary state (frozen topology) for all values of the coupling parameter, although the dynamics of the maps at the nodes of the network can be non-trivial. The structure of the network shows interesting hierarchical properties and in certain parameter regions the dynamics is polysynchronous: nodes can be divided in differently synchronized classes but contrary to cluster synchronization, nodes in the same class need not be connected to each other. These complicated synchrony patterns have been conjectured to play roles in systems biology and circuits. The adaptive system we study describes ways whereby this behaviour can evolve from undifferentiated nodes.Comment: 13 pages, 17 figure

    Zc(3900)Z_c(3900): Confronting theory and lattice simulations

    Get PDF
    We consider a recent TT-matrix analysis by Albaladejo {\it et al.}, [Phys.\ Lett.\ B {\bf 755}, 337 (2016)] which accounts for the J/ψπJ/\psi\pi and D∗DˉD^\ast\bar{D} coupled--channels dynamics, and that successfully describes the experimental information concerning the recently discovered Zc(3900)±Z_c(3900)^\pm. Within such scheme, the data can be similarly well described in two different scenarios, where the Zc(3900)Z_c(3900) is either a resonance or a virtual state. To shed light into the nature of this state, we apply this formalism in a finite box with the aim of comparing with recent Lattice QCD (LQCD) simulations. We see that the energy levels obtained for both scenarios agree well with those obtained in the single-volume LQCD simulation reported in Prelovsek {\it et al.} [Phys.\ Rev.\ D {\bf 91}, 014504 (2015)], making thus difficult to disentangle between both possibilities. We also study the volume dependence of the energy levels obtained with our formalism, and suggest that LQCD simulations performed at several volumes could help in discerning the actual nature of the intriguing Zc(3900)Z_c(3900) state

    Density functional simulation of small Fe nanoparticles

    Full text link
    We calculate from first principles the electronic structure, relaxation and magnetic moments in small Fe particles, applying the numerical local orbitals method in combination with norm-conserving pseudopotentials. The accuracy of the method in describing elastic properties and magnetic phase diagrams is tested by comparing benchmark results for different phases of crystalline iron to those obtained by an all-electron method. Our calculations for the bipyramidal Fe_5 cluster qualitatively and quantitatively confirm previous plane-wave results that predicted a non-collinear magnetic structure. For larger bcc-related (Fe_35) and fcc-related (Fe_38, Fe_43, Fe_62) particles, a larger inward relaxation of outer shells has been found in all cases, accompanied by an increase of local magnetic moments on the surface to beyond 3 mu_B.Comment: 15 pages with 6 embedded postscript figures, updated version, submitted to Eur.Phys.J.

    An experimental study of wine consumers’ willingness to pay for environmental characteristics

    Get PDF
    The reduction of pesticides use is becoming a priority for the public authorities in many countries. We conducted an experiment with wine consumers to see whether end-consumers value the dissemination of information about environmentally-friendly production practices. The experiment was devised to (i) evaluate whether there is a premium for environmentally-friendly wines, (ii) determine whether or not consumers are sensitive to label owners who implement and guarantee the environmental actions, (iii) and assess the impact of public messages about the consequences of pesticide use. Some 139 participants were divided randomly into two groups. One group had no specific information about the current state of pesticide use in farming. The other group was given information about pesticide use in farming before making their valuations. Becker-DeGroot-Marshak mechanisms revealed that (i) the environmental signal is valued differently depending on who conveyed the information, and that (ii)dissemination of information about the environmental repercussions of farming methods does not significantly affect willingness-to-pay.Willingness to pay, Wine, Effect of information, Experimental economics, Environment, Demand and Price Analysis, Food Consumption/Nutrition/Food Safety,

    Families of piecewise linear maps with constant Lyapunov exponent

    Full text link
    We consider families of piecewise linear maps in which the moduli of the two slopes take different values. In some parameter regions, despite the variations in the dynamics, the Lyapunov exponent and the topological entropy remain constant. We provide numerical evidence of this fact and we prove it analytically for some special cases. The mechanism is very different from that of the logistic map and we conjecture that the Lyapunov plateaus reflect arithmetic relations between the slopes.Comment: 26 pages, 13 figure

    Emergence of hierarchical networks and polysynchronous behaviour in simple adaptive systems

    Full text link
    We describe the dynamics of a simple adaptive network. The network architecture evolves to a number of disconnected components on which the dynamics is characterized by the possibility of differently synchronized nodes within the same network (polysynchronous states). These systems may have implications for the evolutionary emergence of polysynchrony and hierarchical networks in physical or biological systems modeled by adaptive networks.Comment: 4 pages, 4 figure

    Recovering hidden Bloch character: Unfolding Electrons, Phonons, and Slabs

    Full text link
    For a quantum state, or classical harmonic normal mode, of a system of spatial periodicity "R", Bloch character is encoded in a wavevector "K". One can ask whether this state has partial Bloch character "k" corresponding to a finer scale of periodicity "r". Answering this is called "unfolding." A theorem is proven that yields a mathematically clear prescription for unfolding, by examining translational properties of the state, requiring no "reference states" or basis functions with the finer periodicity (r,k). A question then arises, how should one assign partial Bloch character to a state of a finite system? A slab, finite in one direction, is used as the example. Perpendicular components k_z of the wavevector are not explicitly defined, but may be hidden in the state (and eigenvector |i>.) A prescription for extracting k_z is offered and tested. An idealized silicon (111) surface is used as the example. Slab-unfolding reveals surface-localized states and resonances which were not evident from dispersion curves alone.Comment: 11 pages, 7 figure
    • …
    corecore